10. Appendix: References

[1]Eamonn Keogh and Abdullah Mueen. Curse of dimensionality. In Encyclopedia of Machine Learning, pages 257–258. Springer, 2011.
[2]Dagmar Waltemath, Richard Adams, Daniel A Beard, Frank T Bergmann, Upinder S Bhalla, Randall Britten, Vijayalakshmi Chelliah, Michael T Cooling, Jonathan Cooper, Edmund J Crampin, and others. Minimum Information About a Simulation Experiment (MIASE). PLoS Comput Biol, 7(4):e1001122, 2011.
[3]Kouichi Takahashi, Kazunari Kaizu, Bin Hu, and Masaru Tomita. A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics, 20(4):538–546, 2004.
[4]E L Haseltine and F H Arnold. Synthetic gene circuits: design with directed evolution. Annu Rev Biophys Biomol Struct, 36:1–19, 2007.
[5]R E Cobb, T Si, and H Zhao. Directed evolution: an evolving and enabling synthetic biology tool. Curr Opin Chem Biol, 16(3-4):285–291, 2012.
[6]Dean C Karnopp, Donald L Margolis, and Ronald C Rosenberg. System dynamics: modeling, simulation, and control of mechatronic systems. John Wiley & Sons, 2012.
[7]Joe A Clarke. Energy simulation in building design. Routledge, 2001.
[8]Ennio Cascetta. Transportation systems analysis: models and applications. Volume 29. Springer Science & Business Media, 2009.
[9]J R Karr, K Takahashi, and A Funahashi. The principles of whole-cell modeling. Curr Opin Microbiol, 27:18–24, 2015.
[10]D N Macklin, N A Ruggero, and M W Covert. The future of whole-cell modeling. Curr Opin Biotechnol, 28:111–115, 2014.
[11]M Tomita. Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol, 19(6):205–210, 2001.
[12]Javier Carrera and Markus W Covert. Why build whole-cell models? Trends Cell Biol, 25(12):719–722, 2015.
[13]Jeffrey D Orth, Ines Thiele, and Bernhard Ø Palsson. What is flux balance analysis? Nat Biotechnol, 28(3):245–248, 2010.
[14]Aarash Bordbar, Jonathan M Monk, Zachary A King, and Bernhard O Palsson. Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet, 15(2):107, 2014.
[15]Adam M Feist and Bernhard Ø Palsson. The growing scope of applications of genome-scale metabolic reconstructions: the case of E. coli. Nat Biotechnol, 26(6):659, 2008.
[16]B Szigeti, Y D Roth, J A P Sekar, A P Goldberg, S C Pochiraju, and J R Karr. A blueprint for human whole-cell modeling. Curr Opin Syst Biol, In submission.
[17]Masaru Tomita, Kenta Hashimoto, Koichi Takahashi, Thomas Simon Shimizu, Yuri Matsuzaki, Fumihiko Miyoshi, Kanako Saito, Sakura Tanida, Katsuyuki Yugi, J Craig Venter, and others. E-CELL: software environment for whole-cell simulation. Bioinformatics, 15(1):72–84, 1999.
[18]Markus W Covert, Eric M Knight, Jennifer L Reed, Markus J Herrgard, and Bernhard O Palsson. Integrating high-throughput and computational data elucidates bacterial networks. Nature, 429(6987):92, 2004.
[19]Sriram Chandrasekaran and Nathan D Price. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 107(41):17845–17850, 2010.
[20]Markus W Covert, Nan Xiao, Tiffany J Chen, and Jonathan R Karr. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics, 24(18):2044–2050, 2008.
[21]Jong Min Lee, Erwin P Gianchandani, James A Eddy, and Jason A Papin. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol, 4(5):e1000086, 2008.
[22]Javier Carrera, Raissa Estrela, Jing Luo, Navneet Rai, Athanasios Tsoukalas, and Ilias Tagkopoulos. An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli. Mol Syst Biol, 10(7):735, 2014.
[23]Ines Thiele, Neema Jamshidi, Ronan MT Fleming, and Bernhard Ø Palsson. Genome-scale reconstruction of Escherichia coli’s transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput Biol, 5(3):e1000312, 2009.
[24]Emanuel Gonçalves, Joachim Bucher, Anke Ryll, Jens Niklas, Klaus Mauch, Steffen Klamt, Miguel Rocha, and Julio Saez-Rodriguez. Bridging the layers: towards integration of signal transduction, regulation and metabolism into mathematical models. Mol Biosyst, 9(7):1576–1583, 2013.
[25]JC Atlas, EV Nikolaev, ST Browning, and ML Shuler. Incorporating genome-wide DNA sequence information into a dynamic whole-cell model of Escherichia coli: application to DNA replication. IET Syst Biol, 2(5):369–382, 2008.
[26]Elijah Roberts, John E Stone, Leonardo Sepúlveda, Wen-Mei W Hwu, and Zaida Luthey-Schulten. Long time-scale simulations of in vivo diffusion using GPU hardware. In IEEE Intl Symposium Parallel Distributed Processing, 1–8. IEEE, 2009.
[27]Jonathan R Karr, Jayodita C Sanghvi, Derek N Macklin, Miriam V Gutschow, Jared M Jacobs, Benjamin Bolival, Nacyra Assad-Garcia, John I Glass, and Markus W Covert. A whole-cell computational model predicts phenotype from genotype. Cell, 150(2):389–401, 2012.
[28]Aarash Bordbar, Douglas McCloskey, Daniel C Zielinski, Nikolaus Sonnenschein, Neema Jamshidi, and Bernhard O Palsson. Personalized whole-cell kinetic models of metabolism for discovery in genomics and pharmacodynamics. Cell Syst, 1(4):283–292, 2015.
[29]Daniel G Gibson, John I Glass, Carole Lartigue, Vladimir N Noskov, Ray-Yuan Chuang, Mikkel A Algire, Gwynedd A Benders, Michael G Montague, Li Ma, Monzia M Moodie, and others. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987):52–56, 2010.
[30]J R Karr, J C Sanghvi, D N Macklin, A Arora, and M W Covert. WholeCellKB: model organism databases for comprehensive whole-cell models. Nucleic Acids Res, 41(Database issue):D787–D792, 2013.
[31]Nikolay Kolesnikov, Emma Hastings, Maria Keays, Olga Melnichuk, Y Amy Tang, Eleanor Williams, Miroslaw Dylag, Natalja Kurbatova, Marco Brandizi, Tony Burdett, and others. ArrayExpress update–simplifying data submissions. Nucleic Acids Res, 43(D1):D1113–D1116, 2015.
[32]Emily Clough and Tanya Barrett. The Gene Expression Omnibus database. Statistical Genomics: Methods and Protocols, pages 93–110, 2016.
[33]Mingcong Wang, Christina J Herrmann, Milan Simonovic, Damian Szklarczyk, and Christian Mering. Version 4.0 of PaxDb: protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics, 15(18):3163–3168, 2015.
[34]Ulrike Wittig, Renate Kania, Martin Golebiewski, Maja Rey, Lei Shi, Lenneke Jong, Enkhjargal Algaa, Andreas Weidemann, Heidrun Sauer-Danzwith, Saqib Mir, and others. SABIO-RK–database for biochemical reaction kinetics. Nucleic Acids Res, 40(D1):D790–D796, 2012.
[35]Iain C Macaulay, Chris P Ponting, and Thierry Voet. Single-cell multiomics: multiple measurements from single cells. Trends Genet, 33(2):155–168, 2017.
[36]AF Maarten Altelaar, Javier Munoz, and Albert JR Heck. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet, 14(1):35, 2013.
[37]Tobias Fuhrer and Nicola Zamboni. High-throughput discovery metabolomics. Curr Opinion Biotechnol, 31:73–78, 2015.
[38]Peter W Laird. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genetics, 11(3):191, 2010.
[39]Job Dekker, Marc A Marti-Renom, and Leonid A Mirny. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet, 14(6):390, 2013.
[40]Peter J Park. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet, 10(10):669, 2009.
[41]Antoine-Emmanuel Saliba, Alexander J Westermann, Stanislaw A Gorski, and Jörg Vogel. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res, 42(14):8845–8860, 2014.
[42]Aleksandra A Kolodziejczyk, Jong Kyoung Kim, Valentine Svensson, John C Marioni, and Sarah A Teichmann. The technology and biology of single-cell RNA sequencing. Mol Cell, 58(4):610–620, 2015.
[43]Je Hyuk Lee, Evan R Daugharthy, Jonathan Scheiman, Reza Kalhor, Joyce L Yang, Thomas C Ferrante, Richard Terry, Sauveur SF Jeanty, Chao Li, Ryoji Amamoto, and others. Highly multiplexed subcellular RNA sequencing in situ. Science, 343(6177):1360–1363, 2014.
[44]Katja Dettmer, Pavel A Aronov, and Bruce D Hammock. Mass spectrometry-based metabolomics. Mass Spectrom Rev, 26(1):51–78, 2007.
[45]Marcus Bantscheff, Simone Lemeer, Mikhail M Savitski, and Bernhard Kuster. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem, 404(4):939–965, 2012.
[46]Sean C Bendall, Garry P Nolan, Mario Roederer, and Pratip K Chattopadhyay. A deep profiler’s guide to cytometry. Trends Immunol, 33(7):323–332, 2012.
[47]Tanvir Sajed, Ana Marcu, Miguel Ramirez, Allison Pon, An Chi Guo, Craig Knox, Michael Wilson, Jason R Grant, Yannick Djoumbou, and David S Wishart. ECMDB 2.0: a richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res, 44(D1):D495–D501, 2016.
[48]Miguel Ramirez-Gaona, Ana Marcu, Allison Pon, An Chi Guo, Tanvir Sajed, Noah A Wishart, Naama Karu, Yannick Djoumbou Feunang, David Arndt, and David S Wishart. YMDB 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res, 45(D1):D440–D445, 2017.
[49]Zachary A King, Justin Lu, Andreas Dräger, Philip Miller, Stephen Federowicz, Joshua A Lerman, Ali Ebrahim, Bernhard O Palsson, and Nathan E Lewis. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res, 44(D1):D515–D522, 2015.
[50]figshare LLP. Figshare. https://figshare.com, 2017.
[51]SimTK Team. Simtk. https://simtk.org, 2017.
[52]CERN. Zenodo. https://zenodo.org, 2017.
[53]Damian Smedley, Syed Haider, Steffen Durinck, Luca Pandini, Paolo Provero, James Allen, Olivier Arnaiz, Mohammad Hamza Awedh, Richard Baldock, Giulia Barbiera, and others. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res, 43(W1):W589–W598, 2015.
[54]Thomas Cokelaer, Dennis Pultz, Lea M Harder, Jordi Serra-Musach, and Julio Saez-Rodriguez. BioServices: a common Python package to access biological web services programmatically. Bioinformatics, 29(24):3241–3242, 2013.
[55]Alex Kalderimis, Rachel Lyne, Daniela Butano, Sergio Contrino, Mike Lyne, Joshua Heimbach, Fengyuan Hu, Richard Smith, Radek Štěpán, Julie Sullivan, and others. InterMine: extensive web services for modern biology. Nucleic Acids Res, 42(W1):W468–W472, 2014.
[56]Minoru Kanehisa, Miho Furumichi, Mao Tanabe, Yoko Sato, and Kanae Morishima. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res, 45(D1):D353–D361, 2017.
[57]Ethan G Cerami, Benjamin E Gross, Emek Demir, Igor Rodchenkov, Özgün Babur, Nadia Anwar, Nikolaus Schultz, Gary D Bader, and Chris Sander. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res, 39(suppl_1):D685–D690, 2010.
[58]UniProt Consortium and others. UniProt: the universal protein knowledgebase. Nucleic Acids Res, 45(D1):D158–D169, 2017.
[59]Ron Caspi, Richard Billington, Luciana Ferrer, Hartmut Foerster, Carol A Fulcher, Ingrid M Keseler, Anamika Kothari, Markus Krummenacker, Mario Latendresse, Lukas A Mueller, and others. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res, 44(D1):D471–D480, 2016.
[60]Ingrid M Keseler, Amanda Mackie, Alberto Santos-Zavaleta, Richard Billington, César Bonavides-Martínez, Ron Caspi, Carol Fulcher, Socorro Gama-Castro, Anamika Kothari, Markus Krummenacker, and others. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res, 45(D1):D543–D550, 2017.
[61]Mario Latendresse, Markus Krummenacker, Miles Trupp, and Peter D Karp. Construction and completion of flux balance models from pathway databases. Bioinformatics, 28(3):388–396, 2012.
[62]Michael Y Galperin, Xosé M Fernández-Suárez, and Daniel J Rigden. The 24th annual Nucleic Acids Research database issue: a look back and upcoming changes. Nucleic Acids Res, 45(D1):D1–D11, 2017.
[63]Heinz Pampel, Paul Vierkant, Frank Scholze, Roland Bertelmann, Maxi Kindling, Jens Klump, Hans-Jürgen Goebelbecker, Jens Gundlach, Peter Schirmbacher, and Uwe Dierolf. Making research data repositories visible: the re3data.org Registry. PloS One, 8(11):e78080, 2013.
[64]Paul R Cohen. DARPA’s Big Mechanism program. Phys Biol, 12(4):045008, 2015.
[65]Nancy Y Yu, James R Wagner, Matthew R Laird, Gabor Melli, Sébastien Rey, Raymond Lo, Phuong Dao, S Cenk Sahinalp, Martin Ester, Leonard J Foster, and others. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 26(13):1608–1615, 2010.
[66]Vikram Agarwal, George W Bell, Jin-Wu Nam, and David P Bartel. Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4:e05005, 2015.
[67]Fedor A Kolpakov, Nikita I Tolstykh, Tagir F Valeev, Ilya N Kiselev, Elena O Kutumova, Anna Ryabova, Ivan S Yevshin, and Alexander E Kel. BioUML–open source plug-in based platform for bioinformatics: invitation to collaboration. In Moscow Conference on Computational Molecular Biology, 172–173. Department of Bioengineering and Bioinformatics of MV Lomonosov Moscow State University, 2011.
[68]Yukiko Matsuoka, Akira Funahashi, Samik Ghosh, and Hiroaki Kitano. Modeling and simulation using CellDesigner. Transcription Factor Regulatory Networks: Methods and Protocols, pages 121–145, 2014.
[69]Frank T Bergmann, Stefan Hoops, Brian Klahn, Ursula Kummer, Pedro Mendes, Jürgen Pahle, and Sven Sahle. COPASI and its applications in biotechnology. J Biotechnol, 261:215–220, 2017.
[70]Herbert M Sauro, Michael Hucka, Andrew Finney, Cameron Wellock, Hamid Bolouri, John Doyle, and Hiroaki Kitano. Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. Omics, 7(4):355–372, 2003.
[71]Diana C Resasco, Fei Gao, Frank Morgan, Igor L Novak, James C Schaff, and Boris M Slepchenko. Virtual Cell: computational tools for modeling in cell biology. Wiley Interdiscip Rev Syst Biol Med, 4(2):129–140, 2012.
[72]Adam M Smith, Wen Xu, Yao Sun, James R Faeder, and G Elisabeta Marai. RuleBender: integrated modeling, simulation and visualization for rule-based intracellular biochemistry. BMC Bioinformatics, 13(8):S3, 2012.
[73]Ali Ebrahim, Joshua A Lerman, Bernhard O Palsson, and Daniel R Hyduke. COBRApy: constraints-based reconstruction and analysis for Python. BMC Syst Biol, 7(1):74, 2013.
[74]Joost Boele, Brett G Olivier, and Bas Teusink. FAME, the flux analysis and modeling environment. BMC Syst Biol, 6(1):8, 2012.
[75]Rasmus Agren, Liming Liu, Saeed Shoaie, Wanwipa Vongsangnak, Intawat Nookaew, and Jens Nielsen. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol, 9(3):e1002980, 2013.
[76]Katherine Wolstencroft, Stuart Owen, Olga Krebs, Quyen Nguyen, Natalie J Stanford, Martin Golebiewski, Andreas Weidemann, Meik Bittkowski, Lihua An, David Shockley, and others. SEEK: a systems biology data and model management platform. BMC Syst Biol, 9(1):33, 2015.
[77]T Helikar, B Kowal, and JA Rogers. A cell simulator platform: the Cell Collective. Clin Pharmacol Ther, 93(5):393–395, 2013.
[78]Franco du Preez. JWS Online. Encyclopedia of Systems Biology, pages 1063–1066, 2013.
[79]Carlos F Lopez, Jeremy L Muhlich, John A Bachman, and Peter K Sorger. Programming biological models in Python using PySB. Mol Syst Biol, 9(1):646, 2013.
[80]Falko Krause, Jannis Uhlendorf, Timo Lubitz, Marvin Schulz, Edda Klipp, and Wolfram Liebermeister. Annotation and merging of SBML models with semanticSBML. Bioinformatics, 26(3):421–422, 2009.
[81]Maxwell L Neal, Michael T Cooling, Lucian P Smith, Christopher T Thompson, Herbert M Sauro, Brian E Carlson, Daniel L Cook, and John H Gennari. A reappraisal of how to build modular, reusable models of biological systems. PLoS Comput Biol, 10(10):e1003849, 2014.
[82]Paul Kirk, Thomas Thorne, and Michael PH Stumpf. Model selection in systems and synthetic biology. Curr Opin Biotechnol, 24(4):767–774, 2013.
[83]Juliane Liepe, Paul Kirk, Sarah Filippi, Tina Toni, Chris P Barnes, and Michael PH Stumpf. A framework for parameter estimation and model selection from experimental data in systems biology using approximate bayesian computation. Nat Protoc, 9(2):439, 2014.
[84]Tina Toni, David Welch, Natalja Strelkowa, Andreas Ipsen, and Michael PH Stumpf. Approximate bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface, 6(31):187–202, 2009.
[85]Max Flöttmann, Jörg Schaber, Stephan Hoops, Edda Klipp, and Pedro Mendes. ModelMage: a tool for automatic model generation, selection and management. Genome Inform, 20:52–63, 2008.
[86]Rob Johnson, Paul Kirk, and Michael PH Stumpf. SYSBIONS: nested sampling for systems biology. Bioinformatics, 31(4):604–605, 2014.
[87]Jeffrey D Orth and Bernhard Ø Palsson. Systematizing the generation of missing metabolic knowledge. Biotechnol Bioeng, 107(3):403–412, 2010.
[88]Edik M Blais, Arvind K Chavali, and Jason A Papin. Linking genome-scale metabolic modeling and genome annotation. Methods Mol Biol, pages 61–83, 2013.
[89]Vinay Satish Kumar, Madhukar S Dasika, and Costas D Maranas. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics, 8(1):212, 2007.
[90]Markus J Herrgård, Stephen S Fong, and Bernhard Ø Palsson. Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Comput Biol, 2(7):e72, 2006.
[91]Jennifer L Reed, Trina R Patel, Keri H Chen, Andrew R Joyce, Margaret K Applebee, Christopher D Herring, Olivia T Bui, Eric M Knight, Stephen S Fong, and Bernhard O Palsson. Systems approach to refining genome annotation. Proc Natl Acad Sci U S A, 103(46):17480–17484, 2006.
[92]Mario Latendresse. Efficiently gap-filling reaction networks. BMC Bioinformatics, 15(1):225, 2014.
[93]Vinay Satish Kumar and Costas D Maranas. GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol, 5(3):e1000308, 2009.
[94]Peter Kharchenko, Lifeng Chen, Yoav Freund, Dennis Vitkup, and George M Church. Identifying metabolic enzymes with multiple types of association evidence. BMC Bioinformatics, 7(1):177, 2006.
[95]Zhaleh Hosseini and Sayed-Amir Marashi. Discovering missing reactions of metabolic networks by using gene co-expression data. Sci Rep, 2017.
[96]Matthew N Benedict, Michael B Mundy, Christopher S Henry, Nicholas Chia, and Nathan D Price. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models. PLoS Comput Biol, 10(10):e1003882, 2014.
[97]Edward Vitkin and Tomer Shlomi. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome Biol, 13(11):R111, 2012.
[98]Michelle L Green and Peter D Karp. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics, 5(1):76, 2004.
[99]Andrei Osterman. A hidden metabolic pathway exposed. Proc Natl Acad Sci U S A, 103(15):5637–5638, 2006.
[100]Alan Garny, David P Nickerson, Jonathan Cooper, Rodrigo Weber dos Santos, Andrew K Miller, Steve McKeever, Poul MF Nielsen, and Peter J Hunter. CellML and associated tools and techniques. Philos Trans A Math Phys Eng Sci, 366(1878):3017–3043, 2008.
[101]Michael Hucka, Andrew Finney, Herbert M Sauro, Hamid Bolouri, John C Doyle, Hiroaki Kitano, Adam P Arkin, Benjamin J Bornstein, Dennis Bray, Athel Cornish-Bowden, and others. The Systems Biology Markup Language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics, 19(4):524–531, 2003.
[102]Leonard A Harris, Justin S Hogg, Jose-Juan Tapia, John AP Sekar, Sanjana Gupta, Ilya Korsunsky, Arshi Arora, Dipak Barua, Robert P Sheehan, and James R Faeder. BioNetGen 2.2: advances in rule-based modeling. Bioinformatics, 32(21):3366–3368, 2016.
[103]Vincent Danos and Cosimo Laneve. Formal molecular biology. Theor Comput Sci, 325(1):69–110, 2004.
[104]Carsten Maus, Stefan Rybacki, and Adelinde M Uhrmacher. Rule-based multi-level modeling of cell biological systems. BMC Syst Biol, 5(1):166, 2011.
[105]Vijayalakshmi Chelliah, Nick Juty, Ishan Ajmera, Raza Ali, Marine Dumousseau, Mihai Glont, Michael Hucka, Gaël Jalowicki, Sarah Keating, Vincent Knight-Schrijver, and others. BioModels: ten-year anniversary. Nucleic Acids Res, 43(D1):D542–D548, 2015.
[106]Dagmar Waltemath, Jonathan R Karr, Frank T Bergmann, Vijayalakshmi Chelliah, Michael Hucka, Marcus Krantz, Wolfram Liebermeister, Pedro Mendes, Chris J Myers, Pinar Pir, and others. Toward community standards and software for whole-cell modeling. IEEE Trans Biomed Eng, 63(10):2007–2014, 2016.
[107]Michael W Sneddon, James R Faeder, and Thierry Emonet. Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat Methods, 8(2):177–183, 2011.
[108]Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. J Phys Chem, 81(25):2340–2361, 1977.
[109]Vo Hong Thanh, Roberto Zunino, and Corrado Priami. Efficient constant-time complexity algorithm for stochastic simulation of large reaction networks. IEEE/ACM Trans Comput Biol Bioinform, 14(3):657–667, 2017.
[110]Dagmar Waltemath, Richard Adams, Frank T Bergmann, Michael Hucka, Fedor Kolpakov, Andrew K Miller, Ion I Moraru, David Nickerson, Sven Sahle, Jacky L Snoep, and others. Reproducible computational biology experiments with SED-ML-the Simulation Experiment Description Markup Language. BMC Syst Biol, 5(1):198, 2011.
[111]Roland Ewald and Adelinde M Uhrmacher. SESSL: a domain-specific language for simulation experiments. ACM Trans Modeling Comput Simul, 24(2):11, 2014.
[112]Pawan K Dhar, Kouichi Takahashi, Yoichi Nakayama, and Masaru Tomita. E-Cell: computer simulation of the cell. Rev Cell Biol Mol Med, 2006.
[113]Chris J Myers, Nathan Barker, Kevin Jones, Hiroyuki Kuwahara, Curtis Madsen, and Nam-Phuong D Nguyen. iBioSim: a tool for the analysis and design of genetic circuits. Bioinformatics, 25(21):2848–2849, 2009.
[114]Endre T Somogyi, Jean-Marie Bouteiller, James A Glazier, Matthias König, J Kyle Medley, Maciej H Swat, and Herbert M Sauro. libRoadRunner: a high performance SBML simulation and analysis library. Bioinformatics, 31(20):3315–3321, 2015.
[115]Marco S Nobile, Daniela Besozzi, Paolo Cazzaniga, Giancarlo Mauri, and Dario Pescini. cupSODA: a CUDA-powered simulator of mass-action kinetics. In International Conference on Parallel Computing Technologies, 344–357. Springer, 2013.
[116]Marco S Nobile, Paolo Cazzaniga, Daniela Besozzi, Dario Pescini, and Giancarlo Mauri. cuTauLeaping: a GPU-powered tau-leaping stochastic simulator for massive parallel analyses of biological systems. PLoS One, 9(3):e91963, 2014.
[117]Christopher D Carothers, David Bauer, and Shawn Pearce. ROSS: a high-performance, low-memory, modular Time Warp system. J Parallel Distrib Comput, 62(11):1648–1669, 2002.
[118]Julio R Banga and Eva Balsa-Canto. Parameter estimation and optimal experimental design. Essays in biochemistry, 45:195–210, 2008.
[119]Alexander IJ Forrester and Andy J Keane. Recent advances in surrogate-based optimization. Progress Aerospace Sci, 45(1):50–79, 2009.
[120]Chen Wang, Qingyun Duan, Wei Gong, Aizhong Ye, Zhenhua Di, and Chiyuan Miao. An evaluation of adaptive surrogate modeling based optimization with two benchmark problems. Environmental Modelling Softw, 60:167–179, 2014.
[121]Jason P Halloran and Ahmet Erdemir. Adaptive surrogate modeling for expedited estimation of nonlinear tissue properties through inverse finite element analysis. Annal Biomed Eng, 39(9):2388–2397, 2011.
[122]Donald R Jones. A taxonomy of global optimization methods based on response surfaces. J Global Optim, 21(4):345–383, 2001.
[123]Yew S Ong, Prasanth B Nair, and Andrew J Keane. Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA journal, 41(4):687–696, 2003.
[124]Saman Razavi, Bryan A Tolson, and Donald H Burn. Numerical assessment of metamodelling strategies in computationally intensive optimization. Environmental Modelling & Software, 34:67–86, 2012.
[125]Nestor V Queipo, Salvador Pintos, Néstor Rincón, Nemrod Contreras, and Juan Colmenares. Surrogate modeling-based optimization for the integration of static and dynamic data into a reservoir description. Journal of Petroleum Science and Engineering, 35(3):167–181, 2002.
[126]Liviu Panait and Sean Luke. Cooperative multi-agent learning: the state of the art. Autonomous Agents Multi-agent Syst, 11(3):387–434, 2005.
[127]Daniel P Palomar and Yonina C Eldar. Convex optimization in signal processing and communications. Cambridge university press, 2010.
[128]Robin L Raffard, Claire J Tomlin, and Stephen P Boyd. Distributed optimization for cooperative agents: application to formation flight. In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 3, 2453–2459. IEEE, 2004.
[129]Michael Rabbat and Robert Nowak. Distributed optimization in sensor networks. In Proceedings of the 3rd international symposium on Information processing in sensor networks, 20–27. ACM, 2004.
[130]Brian Y Chen, Viacheslav Y Fofanov, Drew H Bryant, Bradley D Dodson, David M Kristensen, Andreas M Lisewski, Marek Kimmel, Olivier Lichtarge, and Lydia E Kavraki. Geometric sieving: automated distributed optimization of 3d motifs for protein function prediction. Lecture Notes in Computer Science, 3909:500–515, 2006.
[131]Louis B Rall. Automatic differentiation: Techniques and applications. Springer, 1981.
[132]Rohit Ramachandran and Paul I Barton. Effective parameter estimation within a multi-dimensional population balance model framework. Chemical Engineering Science, 65(16):4884–4893, 2010.
[133]H Martin Bücker, George Corliss, Paul Hovland, Uwe Naumann, and Boyana Norris. Automatic differentiation: applications, theory, and implementations. Volume 50. Springer Science & Business Media, 2006.
[134]Jan Schumann-Bischoff, Stefan Luther, and Ulrich Parlitz. Nonlinear system identification employing automatic differentiation. Communications in Nonlinear Science and Numerical Simulation, 18(10):2733–2742, 2013.
[135]Oana-Teodora Chis, Julio R Banga, and Eva Balsa-Canto. Structural identifiability of systems biology models: a critical comparison of methods. PloS One, 6(11):e27755, 2011.
[136]Maksat Ashyraliyev, Yves Fomekong-Nanfack, Jaap A Kaandorp, and Joke G Blom. Systems biology: parameter estimation for biochemical models. FEBS J, 276(4):886–902, 2009.
[137]I-Chun Chou and Eberhard O Voit. Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci, 219(2):57–83, 2009.
[138]Jianyong Sun, Jonathan M Garibaldi, and Charlie Hodgman. Parameter estimation using metaheuristics in systems biology: a comprehensive review. IEEE/ACM Trans Comput Biol Bioinfor, 9(1):185–202, 2012.
[139]Carmen G Moles, Pedro Mendes, and Julio R Banga. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res, 13(11):2467–2474, 2003.
[140]Giuseppina Bellu, Maria Pia Saccomani, Stefania Audoly, and Leontina D’Angiò. DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput Meth Program Biomed, 88(1):52–61, 2007.
[141]David R Penas, Patricia González, Jose A Egea, Ramón Doallo, and Julio R Banga. Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy. BMC Bioinformatics, 18(1):52, 2017.
[142]Richard Adams, Allan Clark, Azusa Yamaguchi, Neil Hanlon, Nikos Tsorman, Shakir Ali, Galina Lebedeva, Alexey Goltsov, Anatoly Sorokin, Ozgur E Akman, and others. SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology. Bioinformatics, 29(5):664–665, 2013.
[143]Edmund M Clarke, James R Faeder, Christopher J Langmead, Leonard A Harris, Sumit Kumar Jha, and Axel Legay. Statistical model checking in BioLab: applications to the automated analysis of T-cell receptor signaling pathway. In Int Conf Comput Meth Syst Biol, 231–250. Springer, 2008.
[144]Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: verification of probabilistic real-time systems. In Comput Aided Verification, 585–591. Springer, 2011.
[145]Christian Lieven, Moritz Beber, and Nikolaus Sonnenschein. Memote – a testing suite for constraint-based metabolic models. http://easychair.org/smart-program/ICSB2017/2017-08-08.html#talk:51929, 2017.
[146]Cyrus Omar, Jonathan Aldrich, and Richard C Gerkin. Collaborative infrastructure for test-driven scientific model validation. In Companion Proceedings of the 36th International Conference on Software Engineering, 524–527. ACM, 2014.
[147]Circle Internet Services Inc. Circleci. https://circleci.com, 2017.
[148]Kohsuke Kawaguchi. Jenkins. https://jenkins.io, 2017.
[149]Software Freedom Conservancy. Git. https://git-scm.com/, 2017.
[150]Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. An overview of the HDF5 technology suite and its applications. In Proc EDBT/ICDT 2011 Workshop Array Databases, 36–47. ACM, 2011.
[151]Shabana Vohra, Benjamin A Hall, Daniel A Holdbrook, Syma Khalid, and Philip C Biggin. Bookshelf: a simple curation system for the storage of biomolecular simulation data. Database, 2010:baq033, 2010.
[152]Giacomo Finocchiaro, Ting Wang, Rene Hoffmann, Aitor Gonzalez, and Rebecca C Wade. DSMM: a database of simulated molecular motions. Nucleic Acids Res, 31(1):456–457, 2003.
[153]Marc W van der Kamp, R Dustin Schaeffer, Amanda L Jonsson, Alexander D Scouras, Andrew M Simms, Rudesh D Toofanny, Noah C Benson, Peter C Anderson, Eric D Merkley, Steven Rysavy, and others. Dynameomics: a comprehensive database of protein dynamics. Structure, 18(4):423–435, 2010.
[154]Tim Meyer, Marco D’Abramo, Adam Hospital, Manuel Rueda, Carles Ferrer-Costa, Alberto Pérez, Oliver Carrillo, Jordi Camps, Carles Fenollosa, Dmitry Repchevsky, and others. MoDEL (Molecular Dynamics Extended Library): a database of atomistic molecular dynamics trajectories. Structure, 18(11):1399–1409, 2010.
[155]Gerard Lemson and others. Halo and galaxy formation histories from the millennium simulation: public release of a vo-oriented and sql-queryable database for studying the evolution of galaxies in the lambdacdm cosmogony. arXiv preprint astro-ph/0608019, 2006.
[156]Kristin Riebe, Adrian M Partl, Harrya Enke, Jaime Forero-Romero, Stefan Gottloeber, Anatolyb Klypin, Gerardc Lemson, Franciscod Prada, Joel R Primack, Matthiasa Steinmetz, and others. The MultiDark database: release of the Bolshoi and MultiDark cosmological simulations. Astronomische Nachrichten, 334(7):691–708, 2013.
[157]Katy Wolstencroft, Stuart Owen, Franco du Preez, Olga Krebs, Wolfgang Mueller, Carole Goble, and Jacky L Snoep. The SEEK: a platform for sharing data and models in systems biology. Meth Enzymol, 500:629–655, 2011.
[158]J R Karr, N C Phillips, and M W Covert. WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions. Database, 2014:bau095, 2014.
[159]Zachary A King, Andreas Dräger, Ali Ebrahim, Nikolaus Sonnenschein, Nathan E Lewis, and Bernhard O Palsson. Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput Biol, 11(8):e1004321, 2015.
[160]Suzanne M Paley and Peter D Karp. The Pathway Tools cellular overview diagram and Omics Viewer. Nucleic Acids Res, 34(13):3771–3778, 2006.
[161]R Lee, J R Karr, and M W Covert. WholeCellViz: data visualization for whole-cell models. BMC Bioinformatics, 14:253, 2013.
[162]Jill C Sible and John J Tyson. Mathematical modeling as a tool for investigating cell cycle control networks. Methods, 41(2):238–247, 2007.
[163]Albert Goldbeter. Computational approaches to cellular rhythms. Nature, 420(6912):238, 2002.
[164]Andreas VM Herz, Tim Gollisch, Christian K Machens, and Dieter Jaeger. Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science, 314(5796):80–85, 2006.
[165]Neil Swainston, Kieran Smallbone, Hooman Hefzi, Paul D Dobson, Judy Brewer, Michael Hanscho, Daniel C Zielinski, Kok Siong Ang, Natalie J Gardiner, Jahir M Gutierrez, and others. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics, 12(7):1–7, 2016.
[166]Rasmus Agren, Sergio Bordel, Adil Mardinoglu, Natapol Pornputtapong, Intawat Nookaew, and Jens Nielsen. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol, 8(5):e1002518, 2012.
[167]Mathias Uhlen, Cheng Zhang, Sunjae Lee, Evelina Sjöstedt, Linn Fagerberg, Gholamreza Bidkhori, Rui Benfeitas, Muhammad Arif, Zhengtao Liu, Fredrik Edfors, and others. A pathology atlas of the human cancer transcriptome. Science, 357(6352):eaan2507, 2017.
[168]Jacob J Hughey, Timothy K Lee, and Markus W Covert. Computational modeling of mammalian signaling networks. Wiley Interdiscip Rev Syst Biol Med, 2(2):194–209, 2010.
[169]Mark B Gerstein, Anshul Kundaje, Manoj Hariharan, Stephen G Landt, Koon-Kiu Yan, Chao Cheng, Xinmeng Jasmine Mu, Ekta Khurana, Joel Rozowsky, Roger Alexander, and others. Architecture of the human regulatory network derived from ENCODE data. Nature, 489(7414):91, 2012.
[170]Shigeru Kondo and Takashi Miura. Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 329(5999):1616–1620, 2010.
[171]Anja Geitmann and Joseph KE Ortega. Mechanics and modeling of plant cell growth. Trend Plant Sci, 14(9):467–478, 2009.
[172]Kerwyn Casey Huang, Yigal Meir, and Ned S Wingreen. Dynamic structures in Escherichia coli: spontaneous formation of MinE rings and MinD polar zones. Proc Natl Acad Sci U S A, 100(22):12724–12728, 2003.
[173]Harold P Erickson. Modeling the physics of ftsz assembly and force generation. Proc Natl Acad Sci U S A, 106(23):9238–9243, 2009.
[174]Guy Karlebach and Ron Shamir. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol, 9(10):770, 2008.
[175]Tommy Yu, Catherine M Lloyd, David P Nickerson, Michael T Cooling, Andrew K Miller, Alan Garny, Jonna R Terkildsen, James Lawson, Randall D Britten, Peter J Hunter, and others. The Physiome Model Repository 2. Bioinformatics, 27(5):743–744, 2011.
[176]Stephen Hilgartner. Constituting large-scale biology: building a regime of governance in the early years of the Human Genome Project. BioSocieties, 8(4):397–416, 2013.
[177]Francis S Collins, Michael Morgan, and Aristides Patrinos. The Human Genome Project: lessons from large-scale biology. Science, 300(5617):286–290, 2003.
[178]Stephen Heller, Alan McNaught, Stephen Stein, Dmitrii Tchekhovskoi, and Igor Pletnev. InChI-the worldwide chemical structure identifier standard. J Cheminform, 5(1):7, 2013.
[179]J R Karr, A H Williams, J D Zucker, A Raue, B Steiert, J Timmer, C Kreutz, DREAM8 Parameter Estimation Challenge Consortium, S Wilkinson, B A Allgood, B M Bot, B R Hoff, M R Kellen, M W Covert, G A Stolovitzky, and P Meyer. Summary of the DREAM8 parameter estimation challenge: toward parameter identification for whole-cell models. PLoS Comput Biol, 2015.
[180]Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. Vega-lite: a grammar of interactive graphics. IEEE Trans Vis Comput Graphics, 23(1):341–350, 2017.
[181]ML Shuler, S Leung, and CC Dick. A mathematical model for the growth of a single bacterial cell. Annals of the New York Academy of Sciences, 326(1):35–52, 1979.
[182]Elijah Roberts. Cellular and molecular structure as a unifying framework for whole-cell modeling. Curr Opin Structural Biol, 25:86–91, 2014.
[183]Michael J Hallock, John E Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten. Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations. Parallel Comput, 40(5):86–99, 2014.
[184]John A Cole, Lars Kohler, Jamila Hedhli, and Zaida Luthey-Schulten. Spatially-resolved metabolic cooperativity within dense bacterial colonies. BMC Syst Biol, 9(1):15, 2015.
[185]Oliver Purcell, Bonny Jain, Jonathan R Karr, Markus W Covert, and Timothy K Lu. Towards a whole-cell modeling approach for synthetic biology. Chaos, 23(2):025112, 2013.
[186]Denis Kazakiewicz, Jonathan R Karr, Karol M Langner, and Dariusz Plewczynski. A combined systems and structural modeling approach repositions antibiotics for Mycoplasma genitalium. Comput Biol Chem, 59:91–97, 2015.
[187]Doug Howe, Maria Costanzo, Petra Fey, Takashi Gojobori, Linda Hannick, Winston Hide, David P Hill, Renate Kania, Mary Schaeffer, Susan St Pierre, and others. Big data: the future of biocuration. Nature, 455(7209):47–50, 2008.
[188]Jacky L Snoep, Frank Bruggeman, Brett G Olivier, and Hans V Westerhoff. Towards building the silicon cell: a modular approach. Biosystems, 83(2):207–216, 2006.
[189]J Kyle Medley, Arthur P Goldberg, and Jonathan R Karr. Guidelines for reproducibly building and simulating systems biology models. IEEE Trans Biomed Eng, 63(10):2015–2020, 2016.
[190]Arthur P Goldberg, Yin Hoon Chew, and Jonathan R Karr. Toward scalable whole-cell modeling of human cells. In Proc 2016 Annu ACM Conf SIGSIM Princip Adv Discret Simul, 259–262. ACM, 2016.
[191]Ken Martin, Will Schroeder, and Bill Lorensen. Vtk: the visualization toolkit. https://www.vtk.org, 2017.
[192]ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414):57–74, 2012.
[193]James A Thomson, Joseph Itskovitz-Eldor, Sander S Shapiro, Michelle A Waknitz, Jennifer J Swiergiel, Vivienne S Marshall, and Jeffrey M Jones. Embryonic stem cell lines derived from human blastocysts. Science, 282(5391):1145–1147, 1998.
[194]Peter Löser, Jacqueline Schirm, Anke Guhr, Anna M Wobus, and Andreas Kurtz. Human embryonic stem cell lines and their use in international research. Stem Cells, 28(2):240–246, 2010.
[195]Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, and Zoltán Ujhelyi. Road to a reactive and incremental model transformation platform: three generations of the VIATRA framework. Software Systems Modeling, 15(3):609–629, 2016.
[196]Jonathan R Karr, Maria Lluch-Senar, Luis Serrano, and Javier Carrera. The 2016 Whole-Cell Modeling Summer School. 2017. doi:10.5281/zenodo.1004027.
[197]Jonathan R Karr, Maria Lluch-Senar, Luis Serrano, and Damjana Kastelic. The 2017 Whole-Cell Modeling Summer School. 2017. doi:10.5281/zenodo.1004135.