2.2. Software engineering¶
- 2.2.1. An introduction to Python
- 2.2.1.1. Key concepts
- 2.2.1.2. Installing Python and Python development tools
- 2.2.1.3. Data types
- 2.2.1.4. Variables
- 2.2.1.5. Boolean statements
- 2.2.1.6. If statements
- 2.2.1.7. Loops
- 2.2.1.8. Functions
- 2.2.1.9. Classes
- 2.2.1.10. Modules
- 2.2.1.11. String formatting
- 2.2.1.12. Printing to the command line
- 2.2.1.13. Reading and writing to/from files with
csv
andpyexcel
- 2.2.1.14. Warnings and exceptions
- 2.2.1.15. Other Python languages features
- 2.2.1.16. Exercises
- 2.2.2. Numerical computing with
NumPy
- 2.2.2.1. Array construction
- 2.2.2.2. Concatenation
- 2.2.2.3. Query the shape of an array
- 2.2.2.4. Reshaping
- 2.2.2.5. Selection and slicing
- 2.2.2.6. Transposition
- 2.2.2.7. Algebra
- 2.2.2.8. Trigonometry
- 2.2.2.9. Other mathematical functions
- 2.2.2.10. Data reduction
- 2.2.2.11. Random number generation
- 2.2.2.12. NaN and infinity
- 2.2.2.13. Exercises
- 2.2.2.14. NumPy introduction for MATLAB users
- 2.2.3. Plotting data with
matplotlib
- 2.2.4. Developing database, command line, and web-based programs with Python
- 2.2.5. Writing code for Python 2 and 3
- 2.2.6. Organizing Python code into functions, classes, and modules
- 2.2.7. Structuring Python projects
- 2.2.8. Revisioning code with Git, GitHub, and Meld
- 2.2.9. Testing Python code with unittest, pytest, and Coverage
- 2.2.9.1. Required packages
- 2.2.9.2. File naming and organization
- 2.2.9.3. Writing tests
- 2.2.9.4. Testing stochastic algorithms
- 2.2.9.5. Testing standard output
- 2.2.9.6. Testing cement command line programs
- 2.2.9.7. Testing for multiple version of Python
- 2.2.9.8. Running your tests
- 2.2.9.9. Analyzing the coverage of your tests
- 2.2.9.10. Additional tutorials
- 2.2.10. Debugging Python code using the PyCharm debugger
- 2.2.11. Documenting Python code with Sphinx
- 2.2.12. Continuously testing Python code with CircleCI, Coveralls, Code Climate, and the Karr Lab’s dashboards
- 2.2.13. Distributing Python software with GitHub, PyPI, Docker Hub, and Read The Docs
- 2.2.14. Recommended Python development tools
- 2.2.15. Comparison between Python and other languages