7.1.1. intro_to_wc_modeling.cell_modeling package¶
7.1.1.1. Subpackages¶
- 7.1.1.1.1. intro_to_wc_modeling.cell_modeling.simulation package
- 7.1.1.1.1.1. Subpackages
- 7.1.1.1.1.1.1. intro_to_wc_modeling.cell_modeling.simulation.multi_algorithm package
- 7.1.1.1.1.1.1.1. Submodules
- 7.1.1.1.1.1.1.2. intro_to_wc_modeling.cell_modeling.simulation.multi_algorithm.analysis module
- 7.1.1.1.1.1.1.3. intro_to_wc_modeling.cell_modeling.simulation.multi_algorithm.model module
- 7.1.1.1.1.1.1.4. intro_to_wc_modeling.cell_modeling.simulation.multi_algorithm.simulation module
- 7.1.1.1.1.1.1.5. intro_to_wc_modeling.cell_modeling.simulation.multi_algorithm.submodel_simulation module
- 7.1.1.1.1.1.1.6. intro_to_wc_modeling.cell_modeling.simulation.multi_algorithm.util module
- 7.1.1.1.1.1.1.7. Module contents
- 7.1.1.1.1.1.1. intro_to_wc_modeling.cell_modeling.simulation.multi_algorithm package
- 7.1.1.1.1.2. Submodules
- 7.1.1.1.1.3. intro_to_wc_modeling.cell_modeling.simulation.boolean module
- 7.1.1.1.1.4. intro_to_wc_modeling.cell_modeling.simulation.dfba module
- 7.1.1.1.1.5. intro_to_wc_modeling.cell_modeling.simulation.mrna_and_proteins_using_several_methods module
- 7.1.1.1.1.6. intro_to_wc_modeling.cell_modeling.simulation.ode module
- 7.1.1.1.1.7. intro_to_wc_modeling.cell_modeling.simulation.stochastic module
- 7.1.1.1.1.8. Module contents
- 7.1.1.1.1.1. Subpackages
7.1.1.2. Submodules¶
7.1.1.3. intro_to_wc_modeling.cell_modeling.model_composition module¶
Model composition tutorial
Glycolysis model (Teusink et al., 2000)
Glycerol synthesis model (Cronwright et al., 2002)
- Author
Jonathan Karr <jonrkarr@gmail.com>
- Author
Yin Hoon Chew <yinhoon.chew@mssm.edu>
- Date
2017-08-30
- Copyright
2017, Karr Lab
- License
MIT
-
class
intro_to_wc_modeling.cell_modeling.model_composition.
GlycerolModel
[source]¶ Bases:
object
Glycerol synthesis model (Cronwright et al., 2002)
Based on the version from JWS Online
-
ADP
= 2.17[source]
-
ATP
= 2.37[source]
-
DHAP
= 0.59[source]
-
F16BP
= 6.01[source]
-
GLY
= 0.0[source]
-
K1adp
= 2.0[source]
-
K1atp
= 0.73[source]
-
K1dhap
= 0.54[source]
-
K1f16bp
= 4.8[source]
-
K1g3p
= 1.2[source]
-
K1nad
= 0.93[source]
-
K1nadh
= 0.023[source]
-
K2g3p
= 3.5[source]
-
K2phi
= 1.0[source]
-
Keq1
= 10000.0[source]
-
NAD
= 1.45[source]
-
NADH
= 1.87[source]
-
Phi
= 1.0[source]
-
V2
= 53.0[source]
-
Vf1
= 47.0[source]
-
dg3p_dt
(x)[source]¶ Calculate time derivative of the G3P concentration
- Parameters
x (
numpy.array
) – species concentrations (mM)- Returns
time derivative of the G3P concentration (mM min-1)
- Return type
float
-
dx_dt
(x)[source]¶ Calculate the time derivative of the species concentrations
- Parameters
x (
numpy.array
) – species concentrations (mM)- Returns
time derivative of the species concentrations (mM min-1)
- Return type
numpy.array
-
g3p_0
= 0[source]
-
plot_simulation_results
(t, dhap, g3p)[source]¶ Plot simulation results
- Parameters
t (
numpy.array
) – time (min)dhap (
numpy.array
) – DHAP concentration (mM)g3p (
numpy.array
) – G3P concentration (mM)
- Returns
figure
- Return type
matplotlib.figure.Figure
-
simulate
(t_0=0, t_end=20.0, t_step=0.2)[source]¶ Simulate the model
- Parameters
t_0 (
float
, optional) – start time (min)t_end (
float
, optional) – end time (min)t_step (
float
, optional) – time step to record predicted concentrations (min)
- Returns
numpy.array
: time (min)numpy.array
: DHAP concentration (mM)numpy.array
: G3P concentration (mM)
- Return type
tuple
-
v_1
(x)[source]¶ Calculate the rate of Glycerol 3-phosphate dehydrogenase (DHAP <=> G3P)
- Parameters
x (
numpy.array
) – species concentrations (mM)- Returns
rate of Glycerol 3-phosphate dehydrogenase (mM min-1)
- Return type
float
-
v_2
(x)[source]¶ Calculate the rate of Glycerol 3-phosphatase (G3P <=> Gly)
- Parameters
x (
numpy.array
) – species concentrations (mM)- Returns
rate of Glycerol 3-phosphatase (mM min-1)
- Return type
float
-
property
x_0
[source]
-
-
class
intro_to_wc_modeling.cell_modeling.model_composition.
GlycolysisModel
[source]¶ Bases:
object
Glycolysis model (Teusink et al., 2000)
Based on the version from JWS Online
-
ACE_0
= 0.04[source]
-
BPG_0
= 0.0[source]
-
CO2
= 1.0[source]
-
CPFKAMP
= 0.0845[source]
-
CPFKATP
= 3.0[source]
-
CPFKF16BP
= 0.397[source]
-
CPFKF26BP
= 0.0174[source]
-
CPFKF6P
= 0.0[source]
-
CiPFKATP
= 100.0[source]
-
ETOH
= 50.0[source]
-
F16BP_0
= 0.1[source]
-
F26BP
= 0.02[source]
-
F6P_0
= 0.28[source]
-
G6P_0
= 1.39[source]
-
GLCi_0
= 0.087[source]
-
GLCo
= 50.0[source]
-
GLY
= 0.15[source]
-
KATPASE
= 39.5[source]
-
KGLYCOGEN
= 6.0[source]
-
KPFKAMP
= 0.0995[source]
-
KPFKF16BP
= 0.111[source]
-
KPFKF26BP
= 0.000682[source]
-
KSUCC
= 21.4[source]
-
KTREHALOSE
= 2.4[source]
-
KeqADH
= 6.9e-05[source]
-
KeqAK
= 0.45[source]
-
KeqALD
= 0.069[source]
-
KeqENO
= 6.7[source]
-
KeqG3PDH
= 4300.0[source]
-
KeqGLK
= 3800.0[source]
-
KeqGLT
= 1.0[source]
-
KeqPGI
= 0.314[source]
-
KeqPGK
= 3200.0[source]
-
KeqPGM
= 0.19[source]
-
KeqPYK
= 6500.0[source]
-
KeqTPI
= 0.045[source]
-
KiADHACE
= 1.1[source]
-
KiADHETOH
= 90.0[source]
-
KiADHNAD
= 0.92[source]
-
KiADHNADH
= 0.031[source]
-
KiPFKATP
= 0.65[source]
-
KmADHACE
= 1.11[source]
-
KmADHETOH
= 17.0[source]
-
KmADHNAD
= 0.17[source]
-
KmADHNADH
= 0.11[source]
-
KmALDDHAP
= 2.4[source]
-
KmALDF16P
= 0.3[source]
-
KmALDGAP
= 2.0[source]
-
KmALDGAPi
= 10.0[source]
-
KmENOP2G
= 0.04[source]
-
KmENOPEP
= 0.5[source]
-
KmG3PDHDHAP
= 0.4[source]
-
KmG3PDHGLY
= 1.0[source]
-
KmG3PDHNAD
= 0.93[source]
-
KmG3PDHNADH
= 0.023[source]
-
KmGAPDHBPG
= 0.0098[source]
-
KmGAPDHGAP
= 0.21[source]
-
KmGAPDHNAD
= 0.09[source]
-
KmGAPDHNADH
= 0.06[source]
-
KmGLKADP
= 0.23[source]
-
KmGLKATP
= 0.15[source]
-
KmGLKG6P
= 30.0[source]
-
KmGLKGLCi
= 0.08[source]
-
KmGLTGLCi
= 1.1918[source]
-
KmGLTGLCo
= 1.1918[source]
-
KmPDCPYR
= 4.33[source]
-
KmPFKATP
= 0.71[source]
-
KmPFKF6P
= 0.1[source]
-
KmPGIF6P
= 0.3[source]
-
KmPGIG6P
= 1.4[source]
-
KmPGKADP
= 0.2[source]
-
KmPGKATP
= 0.3[source]
-
KmPGKBPG
= 0.003[source]
-
KmPGKP3G
= 0.53[source]
-
KmPGMP2G
= 0.08[source]
-
KmPGMP3G
= 1.2[source]
-
KmPYKADP
= 0.53[source]
-
KmPYKATP
= 1.5[source]
-
KmPYKPEP
= 0.14[source]
-
KmPYKPYR
= 21.0[source]
-
L0
= 0.66[source]
-
NADH_0
= 0.39[source]
-
NAD_0
= 1.2[source]
-
P2G_0
= 0.1[source]
-
P3G_0
= 0.1[source]
-
PEP_0
= 0.1[source]
-
PYR_0
= 3.36[source]
-
Prb_0
= 5.0[source]
-
SUCC
= 0.0[source]
-
SUMAXP
= 4.1[source]
-
TRIO_0
= 5.17[source]
-
Trh
= 0.0[source]
-
VmADH
= 810.0[source]
-
VmALD
= 322.258[source]
-
VmENO
= 365.806[source]
-
VmG3PDH
= 70.15[source]
-
VmGAPDHf
= 1184.52[source]
-
VmGAPDHr
= 6549.68[source]
-
VmGLK
= 226.452[source]
-
VmGLT
= 97.264[source]
-
VmPDC
= 174.194[source]
-
VmPFK
= 182.903[source]
-
VmPGI
= 339.677[source]
-
VmPGK
= 1306.45[source]
-
VmPGM
= 2525.81[source]
-
VmPYK
= 1088.71[source]
-
dx_dt
(x)[source]¶ Calculate the time derivative of the species concentrations
- Parameters
x (
numpy.array
) – species concentrations (mM)- Returns
time derivative of the species concentrations (mM min-1)
- Return type
numpy.array
-
gR
= 1.12[source]
-
nPDC
= 1.9[source]
-
plot_simulation_results
(t, dhap)[source]¶ Plot simulation results
- Parameters
t (
numpy.array
) – time (min)dhap (
numpy.array
) – DHAP concentration (mM)
- Returns
figure
- Return type
matplotlib.figure.Figure
-
simulate
(t_0=0, t_end=20.0, t_step=0.2)[source]¶ Simulate the model
- Parameters
t_0 (
float
, optional) – start time (min)t_end (
float
, optional) – end time (min)t_step (
float
, optional) – time step to record predicted concentrations (min)
- Returns
numpy.array
: time (min)numpy.array
: DHAP concentration (mM)
- Return type
tuple
-
property
x_0
[source]
-
-
class
intro_to_wc_modeling.cell_modeling.model_composition.
MergedModel
[source]¶ Bases:
object
Merged model
-
dx_dt
(x)[source]¶ Calculate the time derivative of the species concentrations
- Parameters
x (
numpy.array
) – species concentrations (mM)- Returns
time derivative of the species concentrations (mM min-1)
- Return type
numpy.array
-
simulate
(t_0=0, t_end=20.0, t_step=0.2)[source]¶ Simulate the model
- Parameters
t_0 (
float
, optional) – start time (min)t_end (
float
, optional) – end time (min)t_step (
float
, optional) – time step to record predicted concentrations (min)
- Returns
numpy.array
: time (min)numpy.array
: DHAP concentration (mM)numpy.array
: G3P concentration (mM)
- Return type
tuple
-
property
x_0
[source]
-